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Introduction

The variance of Coded Wire Tag (CWT) contribution estimates is of
central importance to anyone using CWT data. In this paper a
model for CWT variance is presented. It is not meant as a
competitor to the other estimators wherein bias, efficiency, etc.
are considered. Rather it is intended to be used in exploring how
the variance of contribution changes under differing assumptions.
Using this model assumptions are expressed as covariances between
fish or fish groups. This provides a mechanism for considering
how behavioral interactions hetween fish and the dynamics of a
fishery can effect the variance of contribution.

The Population

In CWT studies the populations of interest are often not
easy to define. A central issue in describing a population is the
notion reproducible results. If we have an estimate of survival
for one sample (or group) of fish, selected from a specific
population, we would like to think that selection of another,
similarly chosen, group from the same population would produce
similar results. By similar we mean that the contribution
estimates would differ only due to sampling variability. If twa
simple random samples of all fish in a hatchery were selected for
marking, then we would expect contribution estimates caomputed
from these groups to be similar, and we might define the
population as all fish in the hatchery at a specific point in
time. Usually, however, our intuition of reproducability goes
beyond this. Most researchers might like to believe that
contributions would be similar if different eggs were selected
from the brood stock or if different members of the broodstock
managed to escape the fisheries.

Our notion of reproducability often extends over time as well. We
often generate contribution estimates for a hatchery stock for
several successive years and then use these to predict future
survival. The assumption being that all members of a stock have
an inherent probability of survival that extends, to some degree,

over years.

In the following sections of this paper models of CWT sampling
variance are developed. That is, we assume that a population has
been defined and that a sample from this population has been
selected for marking. We assume also that the population is large
in size compared to samples selected for marking and that any
marked samples are subject to the same probability distribution
as the population. The contribution rate of the population is
then estimated by computing a contribution rate of the sample.
The sample variance is a measure of the expected difference
between the contribution rate computed for the sample and the
true population contribution rate. To the extent that a select
sample from the population is not representative of (i.e. not
subject to the same probability distribution as) the defined
population, the results may not be reproducible (i.e. the




expected distance between the sample centribution rate and the
population contribution rate is greater than that predicted by
sampling variance estimators).

observing the recovery of individuals from these samples. We are
interested in a single characteristic of each individual. This
characteristic (Yi) is the recovery status of the fish in a
specific recovery strata. The recovery strata can be any
combination of fisheries, hatchery rack, and/or spawning areas.
For fish i, Y¥j = 1 if fish i was recovered in the recovery
strata, and Yj 0 otherwise. Each Yj is considered a random
variable and ¥ = (¥}, ¥2,...... .,Yp) where R is the number of fish
in the sample. We assume that each element of the population has
the same inherent probability of occurring (i.e. being captured)
in the recovery strata. This probability is called the
contribution rate. Our goal is to compute a statistic on the
vector Y which will estimate this rate.

|
|
CWT studies consist of marking samples from the population and

Notation

R = The number of fish in a marked sample from the
population.

a = The number of fish from the sample which occurred (i.e.
were captured in) in recovery strata.

p = The probability that a fish from the population occurs
in the recovery strata (i.e. the contribution rate).

qQ= 1-p

N = Total number of fish which occurred in the recovery
strata

n = Number cf fish sampled in the recovery strata

s = Number of fish from the sample of interest that were

recovered in recovery strata

R
S=; Yi
ul

r = The proportion of fish in the recovery strata that are
from the sample of interest
r = a/N




p, a, r are estimated by:

P=3/n
S=rN

_4a. N
p= R nR°

Variance of P

For the estimate of p given above, R,N, and n are assumed
known. The accuracy of N and n depends upon careful handling of
catch and sample records. While some errors will coccur it is
likely that these will be minimal. Historically, R has often been
estimated. The different methods of estimating R preclude the
development of a single model of the variance of R. Recently
there is a growing trend to use electronic counters to estimate
R. If these counters are used carefully, the resulting estimates
should be precise encugh to allow R to be considered known.

The random variable in the formula for p is 8. s is the
summation of a sequence of random variables (i.e. EYi), each of
which has a sample space of 0 or 1. To compute the variance of p
we can proceed as follows:
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If we are willing to assume that cov(Y;,Yj)=0
(i.e. that all pairs of fish are independent)
then;




var (s) =—R££(1--2-’3)

N N
and
var{p) = %(1- %?)

Here, var(g) is modeled by the binomial distribution. The
binomial distribution is a simple but powerful distribution that
describes a great many natural phenomena. The assumptions of the
binomial distribution are few. They include: 1) that the
characteristic of interest (Y) has two states which can be
identified as 0 and 1; 2) the probability that ¥; = 1 is the same
for each Yi:; and 3) the probability that ¥; = 1 is independent of
the value of Yj (i.e. cov(Yi, ¥j3=0) for all J#i.

The binomial distribution does not, however, work well for CWT
data. The reasons for this can be understood by considering the
assumptions of the binomial distribution. First, assumption 2
requires that each element of the population have the same
inherent probability of occurring (i.e. being captured) in the
recovery strata. This may be referred to as the "single
distribution" assumption. Intuitively, there is some reason to
guestion this. Large fish seem to have a different probability of
surviving than small fish, etc. It may be feasible to relax the
single distribution assumption by considering mixed distribution
models. In mixed distribution models different members of the
population are assigned different implicit probabilities of
occurring in the recovery strata. To date these types of models
have been largely unexplored for CWT studies. However, a paper by
Newman (1990) may provide a basis for further efforts.

Another reason that the binomial distribution dcesn’t work well
for the CWT is the Y; are not independent. That is, there are
covariances among the Yijs and cov(Yj,Yj) <> 0. There are many
potential sources of this covariance. By utilizing equation 1,
the effects of many of these covariances on the variance of CWT
contribution estimates can be modelled. The basic requirement is
that we must translate an intuitive source of covariance into a
covariance term that operates between pairs of individual fish.
Some examples are presented In the following sections.

Covariance due to Sampling Without Replacement

One source of covariance is due to the sampling without
replacement that occurs in fisheries, spawning areasz, and
hatcheries. Sampling without replacement is modeled by the
hypergeometric distribution. The hypergeometric can be derived




from the binomial distribution by considering covariances. To

accommodate this covariance, the compound binomial-hypergeometric
model was developed (Clark and Bernard, Newman 1989). We can use
equation 1 to derive the variance of p under these assumptions as

follows:
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incorporating these results into eguation 1 we get;

var {p) =%[1--%+(R—1)p [-%:—%——1—1;]] 2.

This model is currently used by many CWT data analysts for
variance estimation. In the following sections we will use it as
a standard for comparison with other medels.

Other easily modeled covariance terms arise when different tag
codes occur in the same fishery and when one tag dgroup
contributes to more than one fishery (Clark and Bernard, Comstock

1989).

Covariance due to Scheoeling Behavior

The schooling behavior of fish groups can also impose a
covariance. For example, it is possible that fish from the same
stock, pond, or brood group tend to migrate together throughout
their entire life. Hence, if one iz taken by a predator it may
be that another escapes. If a fish boat captures one, it will
likely capture others. The net effect of these circumstances is
that the probability of capture of one fish is not independent of
that of another. For a simple example of this effect, consider a
hypothetical situation where a fish group of size 100 i=s
migrating through a fishery. Suppose that they are migrating in
close proximity and that, if the school encounters a fish net,
all 100 fish will be caught. Assume that a fish has probability




p=0.1 of encountering a net and that all fish in the boat will be
sampled for marks (i.e. N=n). If a data analyst were unaware of
the schooling behavior of the group then equation 2 may be used
to compute variance. Computation of equation 2 yields a variance
estimate of var(p) = 0.0009. However, a correct variance is
developed as follows;

E{Y,) =E(Y,)=p
E{Y]) =E(Y}) =p
E(Y,Y,)=p
var(Y,) =p-p?

cov{Y;, Y,) =E{Y,X,) -E(Y,) BE(Y;) =p-D*

incorporating this result into equation 1 we get;

var{p) = pgq = 0.09
These variances differ by the inverse of the sample size. The
correct variance being the larger.
For a hypothetical example where actual variance less than the
binomial model would predict, consider twoc fish that are
migrating together. Suppose they have probability =p of
encountering a certain predator. Further, suppose that if this
group of two fish does encounter a predator only one fish will be
eaten. The variance of the number of f£ish actually eaten (i.e.

Y.=Y;+Y2) as predicted by the binomial model is 2pq. The actual
variance is determined as follows:

var(y.)=var{y,) +var(¥,;) +2cov(Yy, Y;)
var(Y,) =E(¥]) -B(¥;)?=0.5p- (0.5p)?
cov(Y,, ¥Y,)=E(Y,Y;)-E(Y;) E{Y))

E(Y,Y,) =0
cov(Y,, ¥;)=-(0.5p)*

var(Y.)=2(0.5p-(0.5p)H-2{0.05p)?=pg

Here, the actual variance is one-half the variance predicted by
the bincomial distribution.




A Simple Model of Fish Schooling and Fishery Dynamics

As a more complex example, we assume that the R fish are evenly
divided into m separate schools. Each school has probability po
of entering the area of a specific fishery. There are T routes
through the fishery, N of which are occupied by a fishing net. If
a school encounters a net, all fish in the school will be
captured. If a boat catches one school then it will cease
fishing. Of the N boats in the fishery n will be sampled (note
that N and n have been redefined as number of boats rather than
number of fish). The variance of p., given these assumptions, is
developed as follows:
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Of the R(R-1)/2 pairs (Y§,Y¥j), there are m(R/m)(R/m -1)
pairs such that Yj and Yj are in the same school. There are
m(m—l)(R/m)2 pairs such that ¥Yj and Yj are in different
schools.




Applying these results to equation 1 we get:

N?p, n n-1 n
r = 1-p, =+ (m1 —_——— 3.
vaz (p) = r| Pt (B-1) 0, [t-—l T]]
If we set m=100, N=100, n=20, R=10000, T=500, and pg = .25

equation 3 equals 0.002356. Here p = pg N/T = 0.03.

Notice that when m=R and T=N equation 3 reduces to equation 2. As
a comparison with equation 2 lets assume that there were 1000
total fish captured in the fishery. If the schooling behavior of
the fish group and the dynamics of the fishery are ignored then
we can use equation 2 with; R = 10000, N=1000, n=200, p=0.05.
The resulting variance is 0.00001475. Note that the variances
under the two models are different by two orders of magnitude.

The hypothetical situations and models described above are
admittedly very simplified approximations to f£ish migration and
fishery dynamics. They are, however, illustrative of vastly more
complex covariances that exist in nature. At this time, the
effect of naturally occurring covariances within and between fish
groups is not well understood. As data is collected and analysis
continues, our understanding will improve. The intent of this
paper is to argue that equation 1 can be utilized to model the
potential effects on var(p) of many types of covariances.
However, it is worth noting that the migration and survival of
fish groups, as well as propagation of a fish stock, constitutes
a complex dynamical system. Being such, it may eventually be
found that classical statistical methods will not adequately
describe its behavior (Palermo pers. comm.).
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